• Linkdin

Silkworms spin silk by pulling: Sheffield scientists

23 Sep '17
3 min read

Researchers from the University of Sheffield’s Department of Material Science and Engineering have shown that silkworms spin silk by pulling rather than pushing it out of their bodies. The team suggests the process, if copied in an industrial setting, could improve how synthetic materials are processed and offer more environmentally-friendly alternatives.

Conventional synthetic textiles are made by extrusion - pushing a liquid feedstock through a dye and then using high changes in temperature and exposure to harsh chemicals to solidify. However, silk can solidify into a fibre at room temperature and leave only water - therefore causing less environmental damage.

The study is published in the journal Nature Communications.

Lead author Jamie Sparkes, a PhD student in the University of Sheffield’s Natural Materials Group, said: “Silk is one of the most promising green biomaterials, and could be the perfect replacement for nylon and polyester based clothing.Traditional production process for silk is both arduous and time-consuming, but if we can bypass that by mimicking nature in an industrial setting, we could improve not only silk, but also how we process our synthetic materials.”

Researchers examined how animals, including silkworms and spiders, push materials like silk out of their bodies.

Dr. Chris Holland, head of the Natural Materials Group, said: “While it is easy to assume that silk is propelled out of the body like we see in comic books, we wanted to put that to the test.”

He added: “By combining computer models with experimental data and practical measurements, we determined the forces needed to squeeze unspun silk down the animals’ silk gland and spin a fibre.”

Sparkes added: “We found that to spin silk by extrusion (pushing), means a silkworm would have to squeeze itself hard enough to generate more pressure than a firing diesel engine. This isn’t possible as the animal’s body would be unable to contain that pressure. It seems that you can’t squeeze silk like a tube of toothpaste.”

However, by measuring the forces required to pull silk from the animal’s body, the researchers found that it was well within the capability of the silkworm to pull a fibre, a process they refer to as pultrusion. The researchers achieved this by adapting a rheometer, a machine used normally to measure the viscosity of liquids, into a highly sensitive spinning wheel, capable of measuring the forces needed to spin.

Holland said: “If I gave you a piece of chewing gum and asked you to make me a fibre, you wouldn’t push it through your teeth as it’s too stiff. You’d grab one end and pull it out - and that’s what the silkworm and spider do.”

The research was conducted by the Natural Materials Group in the Department of Materials Science and Engineering at the University of Sheffield. It has received funding from the European Union’s Horizon 2020 research and innovation programme. (SV)

Fibre2Fashion News Desk – India

Leave your Comments

Esteemed Clients

TÜYAP IHTISAS FUARLARI A.S.
Tradewind International Servicing
Thermore (Far East) Ltd.
The LYCRA Company Singapore  Pte. Ltd
Thai Trade Center
Thai Acrylic Fibre Company Limited
TEXVALLEY MARKET LIMITED
TESTEX AG, Swiss Textile Testing Institute
Telangana State Industrial Infrastructure Corporation Limited (TSllC Ltd)
Taiwan Textile Federation (TTF)
SUZHOU TUE HI-TECH NONWOVEN MACHINERY CO.,LTD
Stahl Holdings B.V.,
Advanced Search