• Linkdin

Multiple fabric layers improve cotton's efficacy in masks

03 Jul '20
4 min read
Pic: NIST
Pic: NIST

The US National Institute of Standards and Technology (NIST) and a Smithsonian Institution institute recently studied how well some natural and synthetic fabrics filter particles sized similar to the COVID-19 virus. Multiple fabric layers may further improve cotton’s effectiveness, it found. None of the materials, however, came close to the efficiency of N95 masks.

Of the 32 cloth materials tested, three of the five most effective at blocking particles were 100 per cent cotton and had a visible raised fibre or nap, like those found on flannels, NIST, which functions under the department of commerce, said on its website.

Four of the five lowest performers were synthetic materials.

Although the sample size was relatively small, the researchers noticed that tighter woven fabrics generally filtered better than knits and loosely woven fabrics. The 100 per cent cotton fabrics with many raised fibres also appeared to filter better than cotton fabrics that lacked this feature. The raised fibres often form web-like structures similar to those in medical grade masks.

Three NIST researchers—Christopher Zangmeister, James Radney and Jamie Weaver—teamed up with Edward Vicenzi of the Smithsonian Institution’s Museum Conservation Institute to evaluate materials and determine both their ability to filter particles and their breathability. Their results have been published in the journal ‘ACS Nano’.

“It turns out that off-the-shelf materials provide some protection from aerosols if you use multiple layers of cloth and a face covering fits snugly,” said Zangmeister. “But none are as good as an N95 mask.”

The project measured a common way to determine how well a material captures particles, called filtration efficiency. Zangmeister and Radney, who are experts at measuring aerosols, set up a relatively simple experiment that relied on extremely sensitive equipment for sizing and counting aerosol particles.

The experiments used fabric samples, or swatches, rather than complete masks. “Basically, we take a swatch of material and flow a stream of particles of a known size at it,” said Zangmeister. “We count the number of particles in the air before and after it’s passed through the fabric. That tells us how effective the material is at capturing particles.”

Instead of real (and dangerous) samples of the SARS-CoV-2 virus, the team used table salt, or sodium chloride (NaCl), the recommended stand-in for virus particles by the National Institute for Occupational Safety and Health (NIOSH), which establishes testing standards for N95 and other masks. The airflow rates used in the experiments were also from NIOSH test recommendations.

The researchers tested each material against particles ranging from 50 to 825 nanometers (nm) to chart its relative performance.

Meanwhile, Weaver, a materials chemist with a background in textiles, and Vicenzi, an expert in microscopy, studied each piece of fabric to determine its yarn count, weave and mass in the hopes of establishing a relationship between these characteristics and the fabric’s ability to filter particles.

The SARS-CoV-2 virus particles are about 110 nm in diameter. N95 masks are rigorously tested to ensure they block at least 95% of particles in this size range. A HEPA (high-efficiency particulate air) filter such as those you might find in an air purifier blocks 99.97 per cent of particles that are about 300 nm in size, and an even higher percentage of smaller particles. Of the fabrics tested in the NIST study, the best-performing single fabric layer blocked 20% of particles in the size range of the virus.

By combining imaging and aerosol measurements, the team found that some fabrics that filter the most particles are also the hardest to breathe through, and some even fail to meet health and safety recommendations for breathability.

“The texture turned out to be one of the more useful parameters to look at because we found that most of the cotton fabrics with raised threads tended to filter best,” said Weaver. “Our findings suggest that a fabric’s ability to filter particles is based on a complex interplay between material type, fiber and weave structures, and yarn count.”

This research adds to the body of knowledge on fabrics and filtration that dates back to the 1918 flu pandemic that killed an estimated 20 to 50 million people worldwide and prompted the first research into fabric masks and their potential to protect against viruses, NIST said.

It also supports subsequent research suggesting that cloth filters would not be suitable for health-care settings.

The team plans to begin another round of testing on a new set of materials in the near future.

Fibre2Fashion News Desk (DS)

Leave your Comments

Esteemed Clients

TÜYAP IHTISAS FUARLARI A.S.
Tradewind International Servicing
Thermore (Far East) Ltd.
The LYCRA Company Singapore  Pte. Ltd
Thai Trade Center
Thai Acrylic Fibre Company Limited
TEXVALLEY MARKET LIMITED
TESTEX AG, Swiss Textile Testing Institute
Telangana State Industrial Infrastructure Corporation Limited (TSllC Ltd)
Taiwan Textile Federation (TTF)
SUZHOU TUE HI-TECH NONWOVEN MACHINERY CO.,LTD
Stahl Holdings B.V.,
Advanced Search