Home / Knowledge / News / Textiles / Genetically altered silkworms spin artificial spider silk
Genetically altered silkworms spin artificial spider silk
18
Oct '10
A research and development effort by the University of Notre Dame, the University of Wyoming, and Kraig Biocraft Laboratories, Inc. has succeeded in producing transgenic silkworms capable of spinning artificial spider silks.

“This research represents a significant breakthrough in the development of superior silk fibers for both medical and non-medical applications,” said Malcolm J. Fraser Jr., a Notre Dame professor of biological sciences. “The generation of silk fibers having the properties of spider silks has been one of the important goals in materials science.”

Natural spider silks have a number of unusual physical properties, including significantly higher tensile strength and elasticity than naturally spun silkworm fibers. The artificial spider silks produced in these transgenic silkworms have similar properties of strength and flexibility to native spider silk.

Silk fibers have many current and possible future biomedical applications, such as use as fine suture materials, improved wound healing bandages, or natural scaffolds for tendon and ligament repair or replacement. Spider silk-like fibers may also have applications beyond biomedical uses, such as in bulletproof vests, strong and lightweight structural fabrics, a new generation athletic clothing and improved automobile airbags.

Until this breakthrough, only very small quantities of artificial spider silk had ever been produced in laboratories, but there was no commercially viable way to produce and spin these artificial silk proteins. Kraig Biocraft believed these limitations could be overcome by using recombinant DNA to develop a bio-technological approach for the production of silk fibers with a much broader range of physical properties or with pre-determined properties, optimized for specific biomedical or other applications.

The firm entered into a research agreement with Fraser, who discovered and patented a powerful and unique genetic engineering tool called “piggyBac”. PiggyBac is a piece of DNA known as a transposon that can insert itself into the genetic machinery of a cell.

“Several years ago, we discovered that the piggyBac transposon could be useful for genetic engineering of the silkworm, and the possibilities for using this commercial protein production platform began to become apparent.”

Fraser, with the assistance of University of Wyoming researcher Randy Lewis, a biochemist who is one of the world's foremost authorities on spider silk, and Don Jarvis, a noted molecular geneticist who specializes in insect protein production, genetically engineered silkworms in which they incorporated specific DNAs taken from spiders. When these transgenic silkworms spin their cocoons, the silk produced is not ordinary silkworm silk, but, rather, a combination of silkworm silk and spider silk. The genetically engineered silk protein produced by the transgenic silkworms has markedly improved elasticity and strength approaching that of native spider silk.

“We've also made strides in improving the process of genetic engineering of these animals so that the development of additional transgenics is facilitated,” Fraser said. “This will allow us to more rapidly assess the effectiveness of our gene manipulations in continued development of specialized silk fibers.”

Since silkworms are already a commercially viable silk production platform, these genetically engineered silkworms effectively solve the problem of large scale production of engineered protein fibers in an economically practical way.

“Using this entirely unique approach, we have confirmed that transgenic silkworms can be a potentially viable commercial platform for production of genetically engineered silk proteins having customizable properties of strength and elasticity,” Fraser said. “We may even be able to genetically engineer fibers that exceed the remarkable properties of native spider silk.”

University of Notre

Must ReadView All

Textiles | On 27th Mar 2017

Himatsingka to disinvest 100% stake in Italian subsidiary

The board of directors at Indian home textiles manufacturer and...

Courtesy: Flipkart

Apparel/Garments | On 27th Mar 2017

Flipkart bags $1bn funding at lower valuation

In a new round of funding, Flipkart, one of India's biggest ecommerce ...

Textiles | On 27th Mar 2017

CCI shows US cotton textiles at Intertextile Shanghai expo

The Cotton Council International (CCI), the global marketing arm of...

Interviews View All

Pratik Bachkaniwala
Palod Himson Machines

Fabric processing machines are picking up

Divyesh Mashruwala
Akshar Industries

Surat dominates foiling, embossing and pleating

Evelyne Cholet
UCMTF

‘France had a reputation of being big in new ideas, but poor in marketing...

Lynda Kelly
Suominen Corporation

Suominen Corporation is a manufacturer of nonwovens as roll goods for...

Suresh Patel
Sidwin Fabric

Sidwin Fabric is a manufacturer and exporter of polypropylene textiles and ...

Kevin Nelson
TissueGen

Kevin Nelson, Chief Scientific Officer, TissueGen discusses the growing...

Robert Brunner
Devereux

Golfwear and menswear brand Devereux is set for greener pastures. Robert...

Ritu Kumar
Label Ritu Kumar

‘Classics will return’ "There are a lot of people wearing western clothes ...

Tony Ward
Tony Ward

"You have to truly understand what your client wants, know her needs, what ...

Press Release

Press Release

Letter to Editor

Letter to Editor

RSS Feed

RSS Feed

Submit your press release on


editorial@fibre2fashion.com

Letter To Editor






(Max. 8000 char.)

Search Companies





SEARCH
March 2017

March 2017

Subscribe today and get the latest update on Textiles, Fashion, Apparel and so on.

SUBSCRIBE


Browse Our Archives

GO


eNEWS
Insights
Subscribe today and get the latest News update in your mail box.
Advanced Search