Home / Knowledge / News / Textiles / Researchers create fibers that can detect & produce sound
Researchers create fibers that can detect & produce sound
17
Jul '10
For centuries, "man-made fibers" meant the raw stuff of clothes and ropes; in the information age, it's come to mean the filaments of glass that carry data in communications networks. But to Yoel Fink, an associate professor of materials science and principal investigator at MIT's Research Lab of Electronics, the threads used in textiles and even optical fibers are much too passive. For the past decade, his lab has been working to develop fibers with ever more sophisticated properties, to enable fabrics that can interact with their environment.

In the August issue of Nature Materials, Fink and his collaborators announce a new milestone on the path to functional fibers: fibers that can detect and produce sound. Applications could include clothes that are themselves sensitive microphones, for capturing speech or monitoring bodily functions, and tiny filaments that could measure blood flow in capillaries or pressure in the brain.

Ordinary optical fibers are made from a "preform," a large cylinder of a single material that is heated up, drawn out, and then cooled. The fibers developed in Fink's lab, by contrast, derive their functionality from the elaborate geometrical arrangement of several different materials, which must survive the heating and drawing process intact.

The heart of the new acoustic fibers is a plastic commonly used in microphones. By playing with the plastic's fluorine content, the researchers were able to ensure that its molecules remain lopsided — with fluorine atoms lined up on one side and hydrogen atoms on the other — even during heating and drawing. The asymmetry of the molecules is what makes the plastic "piezoelectric," meaning that it changes shape when an electric field is applied to it.

In a conventional piezoelectric microphone, the electric field is generated by metal electrodes. But in a fiber microphone, the drawing process would cause metal electrodes to lose their shape. So the researchers instead used a conducting plastic that contains graphite, the material found in pencil lead. When heated, the conducting plastic maintains a higher viscosity — it yields a thicker fluid — than a metal would.

Not only did this prevent the mixing of materials, but, crucially, it also made for fibers with a regular thickness. After the fiber has been drawn, the researchers need to align all the piezoelectric molecules in the same direction. That requires the application of a powerful electric field — 20 times as powerful as the fields that cause lightning during a thunderstorm. Anywhere the fiber is too narrow, the field would generate a tiny lightning bolt, which could destroy the material around it.

Despite the delicate balance required by the manufacturing process, the researchers were able to build functioning fibers in the lab. "You can actually hear them, these fibers," says Chocat, a graduate student in the materials science department. "If you connected them to a power supply and applied a sinusoidal current" — an alternating current whose period is very regular — "then it would vibrate. And if you make it vibrate at audible frequencies and put it close to your ear, you could actually hear different notes or sounds coming out of it." For their Nature Materials paper, however, the researchers measured the fiber's acoustic properties more rigorously. Since water conducts sound better than air, they placed it in a water tank opposite a standard acoustic transducer, a device that could alternately emit sound waves detected by the fiber and detect sound waves emitted by the fiber.

Must ReadView All

President Donald Trump; Courtesy: White House

Textiles | On 23rd Jan 2017

US textile industry eager to work with President Trump

The US textile industry is eager to work with President Donald Trump...

Textiles | On 23rd Jan 2017

LyondellBasel expands Texas plant ethylene capacity

US based producer of petrochemicals and speciality chemicals...

Textiles | On 23rd Jan 2017

China’s cotton imports down 39% in 2016

China’s total cotton imports declined by 39.1 per cent to ...tons in...

Interviews View All

Smita Murarka
Amanté

‘There is huge demand in the Indian lingerie market for non-wired styles.’

Sanjay Desai & Ashish Mulani
True Colors

Digital textile printing will be the technology of the future

Awen Delaval
Samatoa

'Natural fibres are appreciated for traditional authenticity'

Kevin Nelson
TissueGen

Kevin Nelson, Chief Scientific Officer, TissueGen discusses the growing...

Kerem Durdag
Biovation II LLC

Kerem Durdag, CEO, Biovation II LLC, provides an insight into future...

Steve Cole
Xerium Technologies

Steve Cole of Xerium Technologies discusses the industry. Xerium is the...

Ritu Kumar
Label Ritu Kumar

‘Classics will return’ "There are a lot of people wearing western clothes ...

Bani Batra

Bani Batra’s couture wedding collection is inspired by traditional Indian...

Karan Arora
Karan Arora

Bridal couture created with rich Indian heritage, exquisite craftsmanship...

Press Release

Press Release

Letter to Editor

Letter to Editor

RSS Feed

RSS Feed

Submit your press release on


editorial@fibre2fashion.com

Letter To Editor






(Max. 8000 char.)

Search Companies





SEARCH
January 2017

January 2017

Subscribe today and get the latest update on Textiles, Fashion, Apparel and so on.

SUBSCRIBE


Browse Our Archives

GO


eNEWS
Insights
Subscribe today and get the latest News update in your mail box.
Advanced Search